2021年06月22日 アジア東部における初期現生人類の拡散と地域的連続性 https://sicambre.at.webry.info/202106/article_22.html 最近、人類集団の地域的連続性に言及しましたが(関連記事)、その記事で予告したように、近年大きく研究が進展したアジア東部に関してこの問題を整理します。なお、今回はおおむねアムール川流域以南を対象とし、シベリアやロシア極東北東部は限定的にしか言及しません。初期現生人類(Homo sapiens)の拡散に関する研究は近年飛躍的に進展しており、その概要を把握するには、現生人類の起源に関する総説(Bergström et al., 2021、関連記事)や、現生人類に限らずアジア東部のホモ属を概観した総説(澤藤他., 2021、関連記事)や、上部旧石器時代のユーラシア北部の人々の古代ゲノム研究に関する概説(高畑., 2021、関連記事)が有益です。最近の総説的論文からは、アフリカからユーラシアへと拡散した初期現生人類が、拡散先で子孫を残さずに絶滅した事例は珍しくなかった、と示唆されます(Vallini et al., 2021、関連記事)。これらの総説を踏まえつつ、アジア東部における人類集団、とくに初期現生人類の拡散と地域的連続性の問題を自分なりに整理します。
●人類集団の起源と拡散および現代人との連続性に関する問題
人類集団の起源と拡散は、現代人の各地域集団の愛国主義や民族主義と結びつくことが珍しくなく、厄介な問題です。ある地域の古代の人類遺骸が、同じ地域の現代人の祖先集団を表している、との認識は自覚的にせよ無自覚的にせよ、根強いものがあるようです。チェコでは20世紀後半の時点でほぼ半世紀にわたって、一つの学説ではなく事実として、ネアンデルタール人(Homo neanderthalensis)が現代チェコ人の祖先と教えられていました(Shreeve.,1996,P205)。これは、現生人類に共通の認知的傾向なのでしょうが、社会主義イデオロギーの影響もあるかもしれません。チェコというかチェコスロバキアと同じく社会主義国の中国とベトナムと北朝鮮の考古学は「土着発展(The indigenous development model)」型傾向が強い、と指摘されています(吉田.,2017、関連記事)。この傾向は、同じ地域の長期にわたる人類集団の遺伝的連続性と結びつきやすく、それを前提とする現生人類多地域進化説とひじょうに整合的です。中国では現在(少なくとも2008年頃まで)でも、現代中国人は「北京原人」など中国で発見されたホモ・エレクトス(Homo erectus)の直系子孫である、との見解が多くの人に支持されています(Robert.,2013,P267-278、関連記事)。ただ、中国人研究者が関わった最近の研究を見ていくと、近年の第一線の中国人研究者には、人類アフリカ起源説を前提としている人が多いようにも思います。 20世紀末以降に現生人類アフリカ単一起源説が主流となってからは、2010年代にネアンデルタール人や種区分未定のホモ属であるデニソワ人(Denisovan)など絶滅ホモ属(古代型ホモ属)と現生人類との混合が広く認められるようになったものの(Gokcumen., 2020、関連記事)、ホモ・エレクトスやネアンデルタール人やデニソワ人など絶滅ホモ属から現代人に至る同地域の人類集団長期の遺伝的連続性は、少なくともアフリカ外に関しては学術的にほぼ否定された、と言えるでしょう。そうすると、特定地域における人類集団の連続性との主張は、最初の現生人類の到来以降と考えられるようになります。 オーストラリアのモリソン(Scott John Morrison)首相は、先住民への謝罪において、オーストラリアにおける先住民の65000年にわたる連続性に言及しています。その根拠となるのは、オーストラリア北部のマジェドベベ(Madjedbebe)岩陰遺跡で発見された多数の人工物です(Clarkson et al., 2017、関連記事)。この人工物には人類遺骸が共伴していませんが、現生人類である可能性がきわめて高いでしょう。1国の首相が考古学的研究成果を根拠に、先住民の長期にわたるオーストラリアでの連続性を公式に認めているわけです。しかし、マジェドベベ岩陰遺跡の年代に関しては、実際にはもっと新しいのではないか、との強い疑問が呈されています(O’Connell et al., 2018、関連記事)。ただ、マジェドベベ岩陰遺跡の年代がじっさいには65000年前頃よりずっと新しいとしても、少なくとも数万年前にはさかのぼるでしょうし、20世紀のオーストラリア先住民のミトコンドリアDNA(mtDNA)の分析からは、その祖先集団はオーストラリア北部に上陸した後、それぞれ東西の海岸沿いに急速に拡散し、49000〜45000年前までに南オーストラリアに到達して遭遇した、と推測されていますから(Tobler et al., 2017、関連記事)、長期にわたるオーストラリアの人類集団の遺伝的連続性に変わりはない、とも考えられます。 ここで問題となるのは、近現代人のmtDNAハプログループ(mtHg)からその祖先集団の拡散経路や時期を推測することです。一昨年(2019年)の研究では、現代人のmtDNAの分析に基づいて現生人類の起源地は現在のボツワナ北部だった、と主張されましたが(Chan et al., 2019、関連記事)、この研究は厳しく批判されています(Schlebusch et al., 2021、関連記事)。Schlebusch et al., 2021は、mtDNA系統樹が人口集団を表しているわけではない、と注意を喚起します。系統分岐年代は通常、人口集団の分岐に先行し、多くの場合、分岐の頃の人口規模やその後の移動率により形成されるかなりの時間差がある、というわけです。またSchlebusch et al., 2021は、現代の遺伝的データから地理的起源を推測するさいの重要な問題として、人口史における起源から現代までの重ねられた人口統計的過程(移住や分裂や融合や規模の変化)の「上書き」程度を指摘します。mtDNAはY染色体とともに片親性遺伝標識という特殊な遺伝継承を表し、現代人のmtHgとY染色体ハプログループ(YHg)から過去の拡散経路や時期を推測することには慎重であるべきでしょう。また、mtDNAとY染色体DNAが全体的な遺伝的近縁関係を反映していない場合もあり、たとえば後期ネアンデルタール人は、核ゲノムでは明らかに現生人類よりもデニソワ人の方と近縁ですが、mtDNAでもY染色体DNAでもデニソワ人よりも現生人類の方と近縁です(Petr et al., 2020、関連記事)。 系統樹は、mtDNAとY染色体のような片親性遺伝標識だけではなく、核DNAのように両親から継承される遺伝情報に基づいても作成できますが、片親性遺伝標識のように明確ではありません。それでも、アジア東部やオセアニアやヨーロッパなど現代人の各地域集団も系統樹でその遺伝的関係を示せるわけで、現代人がいつどのように現在の居住範囲に拡散してきたのか、推測する手がかりになるわけですが、ここで問題となるのは、系統樹は遠い遺伝的関係の分類群同士の関係を図示するのには適しているものの、近い遺伝的関係の分類群同士では複雑な関係を適切に表せるとは限らない、ということです。たとえば現代人と最近縁の現生分類群であるチンパンジー属では、ボノボ(Pan paniscus)とチンパンジー(Pan troglodytes)との混合(Manuel et al., 2016、関連記事)や、ボノボと遺伝学的に未知の類人猿との混合(Kuhlwilm et al., 2019、関連記事)の可能性が指摘されています。また、以下の現生人類の起源に関する総説(Bergström et al., 2021)の図3cで示されているように、ホモ属の分類群間の混合も複雑だった、と推測されています。 画像 こうした複雑な混合が推測される分類群間の関係は、以下に掲載する上述のVallini et al., 2021の図1のように、混合図として示せば実際の人口史により近くなりますが、それでもかなり単純化したものにならざるを得ないわけで(そもそも、実際の人口史を「正確に」反映した図はほとんどの場合とても実用的にはならないでしょう)、現代人の地域集団にしても、過去のある時点の集団もしくは個体にしても、その起源や形成過程に関しては、あくまでも大まかなもの(低解像度)となります。ネアンデルタール人やデニソワ人と現生人類との関係でさえ複雑なものと推測されていますから、現代人の各地域集団の関係はそれ以上に複雑と考えられます。起源や形成過程や拡散経路や現代人との連続性など、こうした複雑な関係をより正確に把握するには、片親性遺伝標識でも核DNAでも、現代人だけではなく古代人のDNAデータが必要となり、現代人のDNAデータだけに基づいた系統樹に過度に依拠することは危険です。 画像 特定の地域における過去と現代の人類集団の連続性に関しては、上述のように最近の総説的論文から、アフリカからユーラシアへと拡散した初期現生人類が、拡散先で子孫を残さずに絶滅した事例は珍しくなかった、と示唆されます(Vallini et al., 2021)。具体的には、チェコのコニェプルシ(Koněprusy)洞窟群で発見された、洞窟群の頂上の丘にちなんでズラティクン(Zlatý kůň)と呼ばれる成人女性1個体は、ヨーロッパ最古級(45000年以上前)の現生人類集団を表しますが、現代人の直接的祖先ではない、と推測されています(Prüfer et al., 2021、関連記事)。ズラティクンは、出アフリカ系現代人の各地域集団が遺伝的に分化する前にその共通祖先と分岐した、と推測されています。出アフリカ系現代人の祖先集団は遺伝的に、大きくユーラシア東部系統と西部系統に区分されます。 その他には、チェコのバチョキロ洞窟(Bacho Kiro Cave)で発見された現生人類個体群(44640〜42700年前頃)は、現代人との比較ではヨーロッパよりもアジア東部に近く、ヨーロッパ現代人への遺伝的影響は小さかった、と推測されています(Hajdinjak et al., 2021、関連記事)。シベリア西部のウスチイシム(Ust'-Ishim)近郊のイルティシ川(Irtysh River)の土手で発見された44380年前頃となる現生人類男性遺骸(Fu et al., 2014、関連記事)や、ルーマニア南西部の「骨の洞窟(Peştera cu Oase)」で発見された39980年前頃の「Oase 1」個体(Fu et al., 2015、関連記事)も、後のヨーロッパ人口集団に遺伝的影響を残していない、と推測されています。Vallini et al., 2021では、ウスチイシム個体とOase 1はユーラシア東部系統に位置づけられ、Oase 1はバチョキロ洞窟の現生人類個体群(44640〜42700年前頃)と近縁な集団が主要な直接的祖先だった、と推測されています。また、「女性の洞窟(Peştera Muierii、以下PM)」の34000年前頃となる個体(PM1)は、ユーラシア西部系統に位置づけられ、同じ頃のヨーロッパ狩猟採集民の変異内に収まりますが、ヨーロッパ現代人の祖先ではない、と推測されています(Svensson et al., 2021、関連記事)。 ●アジア東部における人類集団の遺伝的連続性
このようにヨーロッパにおいては、初期現生人類が現代人と遺伝的につながっていない事例は珍しくありません。アジア東部においても、最近では同様の事例が明らかになりつつあります。アジア東部でDNAが解析されている最古の個体は、北京の南西56km にある田园(田園)洞窟(Tianyuan Cave)で発見された4万年前頃の男性(Yang et al., 2017、関連記事)で、その次に古いのがモンゴル北東部のサルキート渓谷(Salkhit Valley)で発見された34950〜33900年前頃となる女性(Massilani et al., 2021、関連記事)です。最近になって、そのサルキート個体に次いで古い、34324〜32360年前頃となるアムール川流域の女性(AR33K)のゲノムデータが報告されました(Mao et al., 2021、関連記事)。 Mao et al., 2021は、4万年前頃の北京近郊の田園個体と34000年前頃のモンゴル北東部のサルキート個体と33000年前頃のアムール川流域のAR33Kが、遺伝的に類似していることを示します。アジア東部現代人の各地域集団の形成史に関する最近の包括的研究(Wang et al., 2021、関連記事)に従うと、出アフリカ現生人類のうち非アフリカ系現代人に直接的につながる祖先系統(祖先系譜、ancestry)は、まずユーラシア東部と西部に分岐します。その後、ユーラシア東部系統は沿岸部と内陸部に分岐します。ユーラシア東部沿岸部(EEC)祖先系統でおもに構成されるのは、現代人ではアンダマン諸島人、古代人ではアジア南東部の後期更新世〜完新世にかけての狩猟採集民であるホアビン文化(Hòabìnhian)集団です。アジア東部現代人のゲノムは、おもにユーラシア東部内陸部(EEI)祖先系統で構成されます。このユーラシア東部内陸部祖先系統は南北に分岐し、黄河流域新石器時代集団はおもに北方(EEIN)祖先系統、長江流域新石器時代集団はおもに南方(EEIS)祖先系統で構成される、と推測されています。中国の現代人はこの南北の祖先系統のさまざまな割合の混合としてモデル化でき、現代のオーストロネシア語族集団はユーラシア東部内陸部南方祖先系統が主要な構成要素です(Yang et al., 2020、関連記事)。以下、この系統関係を示したWang et al., 2021の図2です。 画像 田園個体とサルキート個体とAR33Kはおもに、南北に分岐する前のEEI祖先系統で構成されますが、サルキート個体には、別の祖先系統も重要な構成要素(25%)となっています(Mao et al., 2021)。それは、シベリア北東部のヤナRHS(Yana Rhinoceros Horn Site)で発見された31600年前頃の2個体に代表される祖先系統です(Sikora et al., 2019、関連記事)。この祖先系統は、24500〜24100年前頃となるシベリア南部中央のマリタ(Mal'ta)遺跡の少年個体(MA-1)に代表される古代北ユーラシア人(ANE)の祖先とされ、Sikora et al., 2019では古代北シベリア人(ANS)と分類されています。MA-1はアメリカ大陸先住民との強い遺伝的類似性が指摘されており(Raghavan et al., 2014、関連記事)、MA-1に代表されるANEは、おもにユーラシア西部祖先系統で構成されるものの、EEI祖先系統の影響も一定以上(27%)受けている、と推測されます(Mao et al., 2021)。今回は、ANSをANEに区分します。ANE関連祖先系統は、現代のアメリカ大陸先住民やシベリア人やヨーロッパ人などに遺伝的影響を残しています。 重要なのは、田園個体とサルキート個体とAR33Kの年代がいずれも、26500〜19000年前頃となる最終氷期極大期(Last Glacial Maximum、略してLGM)よりも前で、現代人には遺伝的影響を残していない、と推測されていることです(Mao et al., 2021)。南北に分岐する前のEEI関連祖先系統でおもに構成されるこれらの個体に代表される集団は、アムール川流域からモンゴル北東部まで、LGM前にはアジア東部北方において広範に存在した、と推測されます。つまり、アジア東部現代人の主要な直接的祖先集団は、LGM前には他地域に存在した可能性が高く、アジア東部でもヨーロッパと同様に初期現生人類集団の広範な絶滅・置換が起きた可能性は高い、というわけです。もちろん、古代ゲノム研究では標本数がきわめて限定的なので、田園個体などに代表される絶滅集団とアジア東部現代人の主要な直接的祖先集団が隣接して共存していた、とも想定できるわけですが、その可能性は低いでしょう。 アジア東部の古代ゲノム研究はユーラシア西部、とくにヨーロッパと比較して遅れているので、アジア東部現代人の主要な直接的祖先集団がいつアジア東部に到来したのか、ほとんど明らかになっていません。アムール川流域はその解明が比較的進んでいる地域と言えそうで、LGM末期の19000年前頃には、AR33Kよりもアジア東部現代人と遺伝的にずっと近い個体(AR19K)が存在し、14000年前頃にはより直接的に現代人と遺伝的に関連する集団(AR14K)が存在したことから、アムール川流域では現代にまで至る14000年以上の人類集団の遺伝的連続性が指摘されています(Mao et al., 2021)。AR19KはEEIでも南方系(EEIS)よりも北方系(EEIN)に近縁で、19000年前頃までにはEEIの南北の分岐が起きていた、と考えられます。以下、これらの系統関係を示したMao et al., 2021の図3です。 画像 ●アジア東部現代人の形成過程
かつてアジア東部北方に、4万年前頃の田園個体と類似した遺伝的構成の集団が広範に存在し、現代人には遺伝的影響を(全く若しくは殆ど)残していない、つまり絶滅したとなると、上述のように、アジア東部現代人の主要な直接的祖先集団は、LGM前には他地域に存在した可能性が高くなります。では、これらの集団がいつどのような経路でアジア東部に拡散してきたのか、という問題が生じます。初期現生人類のゲノムデータと考古学を統合して初期現生人類の拡散を検証したVallini et al., 2021は、ウスチイシム個体や田園個体やバチョキロ洞窟の4万年以上前の個体群に代表される初期のEEI集団が、初期上部旧石器(Initial Upper Paleolithic、以下IUP)の担い手だった可能性を指摘します。IUPは、ルヴァロワ(Levallois)手法も用いる石刃製作として広範に定義され(仲田., 2019、関連記事)、レヴァントを起点として、ヨーロッパ東部・アジア中央部・アルタイ地域・中国北部に点在します。(仲田., 2020、関連記事)。 Vallini et al., 2021は、その後、ユーラシア西部のどこかに存在した出アフリカ後の人口集団の「接続地」から、石刃および小型石刃(bladelet)の製作により特徴づけられ、装飾品や骨器をよく伴う上部旧石器(UP)の担い手であるユーラシア西部祖先系統でおもに構成される集団がユーラシア規模で拡大し、ユーラシア東部では、在来のEEI関連祖先系統を主体とする集団との混合により、31600年前頃となるヤナRHSの2個体に代表されるANE(もしくはANS)集団が形成された、と推測されます。上述のように、34000年前頃となるモンゴル北東部のサルキート個体はANE集団から一定以上の遺伝的影響を受けています。しかし、アジア東部でも漢人の主要な地域(近現代日本社会で一般的に「中国」と認識されるような地域)や朝鮮半島およびその周辺のユーラシア東部沿岸地域や日本列島では、古代人でも現代人でもユーラシア西部関連祖先系統の顕著な影響は検出されていません。Vallini et al., 2021は、これらの地域において、侵入してくるUP人口集団の移動に対するIUPの担い手だったEEI集団の抵抗、もしくはEEI集団の再拡大が起きた可能性を指摘します。 EEI集団がどのようにアジア東部に拡散してきたのか不明ですが、文化面ではIUPと関連しているとしたら、ユーラシア中緯度地帯を東進してきた可能性が高そうで(ユーラシア南岸を東進してアジア南部か南東部で北上した可能性も考えられますが)、その東進の過程で遺伝的に分化して、田園個体やAR33Kに代表される集団と、アジア東部現代人の主要な直接的祖先集団とに分岐したのでしょう。もちろん、実際の人口史はこのように系統樹で単純に表せないでしょうから、あくまでも大まかに(低解像度で)示した動向にすぎませんが。アジア東部現代人の主要な直接的祖先集団がLGMの前後にどこにいたのか、現時点では直接的な遺伝的手がかりはなく、アジア東部では更新世の現生人類遺骸が少ないので、最近急速に発展している洞窟の土壌DNA解析(澤藤他., 2021)に依拠するしかなさそうです。 ただ、EEIの南北の分岐(EEISとEEIN)が19000年前頃までに起きたことと、シャベル型切歯の頻度から、ある程度の推測は可能かもしれません。シャベル型切歯は、アメリカ大陸先住民や日本人も含めてアジア東部現代人では高頻度で見られ、北京の漢人(CHB)では頻度が93.7%に達しますが、アジア南東部やオセアニアでは低頻度です。シャベル型切歯はエクトジスプラシンA受容体(EDAR)遺伝子の一塩基多型rs3827760のV370A変異との関連が明らかになっており(Kataoka et al., 2021、関連記事)、この変異は派生的で、出現は3万年前頃と推測されています(Harris.,2016,P242、関連記事)。Mao et al., 2021は、この派生的変異がアジア東部北方では、LGM前の田園個体とAR33Kには見られないものの、19000年前頃となるAR19Kを含むそれ以降のアジア東部北方の個体で見られることから、LGMの低紫外線環境における母乳のビタミンD増加への選択だった、との見解(Hlusko et al., 2018、関連記事)を支持しています。 これらの知見から、現代のアジア東部人やアメリカ大陸先住民において高頻度で見られるシャベル型切歯は、EEIN集団においてEEIS集団との分岐後に出現した、と推測されます。上述のように、EEISとEEINの分岐は19000年前よりもさかのぼりますから、シャベル型切歯の出現年代の下限は2万年前頃となりそうです。さらに、上掲のMao et al., 2021の図3で示されるように、アメリカ大陸先住民と遺伝的にきわめて近縁な、アラスカのアップウォードサン川(Upward Sun River)で発見された1個体(USR1)は古代ベーリンジア(ベーリング陸橋)人を表し、ANE関連祖先系統(42%)とEEIN関連祖先系統(58%)の混合としてモデル化できます。古代ベーリンジア人の一方の主要な祖先であるEEIN関連集団は他のEEIN集団と36000±15000年前頃に分岐したものの、25000±1100年前頃まで両者の間には遺伝子流動があった、と推測されています(Moreno-Mayar et al., 2018、関連記事)。 そうすると、25000年前頃までにはシャベル型切歯が出現していたことになりそうです。EEINとEEISは4万年前頃までには分岐し、シャベル型切歯をもたらす変異はEEINにおいて3万年前頃までには出現し、LGMにおいて選択され、アジア東部現代人とアメリカ大陸先住民の祖先集団において高頻度で定着した、と考えられます。この推測が妥当ならば、EEIN集団は、EEIS集団と遺伝的に分化した後、アムール川流域やモンゴルよりも北方に分布し、2万年前頃までにはアムール川流域に南下していた、と考えられます。一方、EEIS集団は、長江流域など現在の中国南部にLGM前に到達していたのかもしれません。私の知見では、この推測を考古学と組み合わせて論じることはできないので、今後の課題となります。またシャベル型切歯に関するこれら近年の知見から、シャベル型切歯を「北京原人」からアジア東部現代人の連続的な進化の根拠とするような見解(関連記事)はほぼ完全に否定された、と言えるでしょう。 ●日本列島の人口史
日本列島では4万年頃以降に遺跡が急増します(佐藤., 2013、関連記事)。4万年以上前となる日本列島における人類の痕跡としては、たとえば12万年前頃とされる島根県出雲市の砂原遺跡の石器がありますが、これが本当に石器なのか、強く疑問が呈されています(関連記事)。おそらく世界でも有数の更新世遺跡の発掘密度を誇るだろう日本列島において、4万年以上前となる人類の痕跡がきわめて少なく、また砂原遺跡のように強く疑問が呈されている事例もあることは、仮にそれらが本当に人類の痕跡だったとしても、4万年前以降の日本列島の人類とは遺伝的にも文化的にも関連がないことを強く示唆します。現代日本人の形成という観点からは、日本列島では4万年前以降の遺跡のみが対象となるでしょう。 日本列島の更新世人類遺骸のDNA解析は、最近報告された2万年前頃の港川人のmtDNAが最初の事例となり(Mizuno et al., 2021、関連記事)、ほとんど解明されていません。日本列島で古代ゲノムデータが得られている人類遺骸は完新世に限定されており、縄文時代以降となります。愛知県田原市伊川津町の貝塚で発見された2500年前頃となる縄文時代個体の核ゲノム解析結果を報告した研究では、「縄文人(縄文文化関連個体)」は38000年前頃に日本列島に到来した旧石器時代集団の直接的子孫である、という見解が支持されています(Gakuhari et al., 2020、関連記事)。しかし、港川人のmtDNAは、少なくとも現時点では現代人で見つかっておらず、ヨーロッパやアジア東部大陸部と同様に、日本列島でも更新世に到来した初期現生人類の中に絶滅した集団が存在した可能性は高いように思います。この問題の解明には、最近急速に発展している洞窟の土壌DNA解析が大きく貢献できるかもしれません。 「縄文人」のゲノムデータは、上述の愛知県で発見された遺骸のみならず、北海道(Kanzawa-Kiriyama et al., 2019、関連記事)や千葉県(Wang et al., 2021)や佐賀県(Adachi et al., 2021、関連記事)の遺骸でも得られています。これら縄文時代の後期北海道の個体から早期九州の個体まで、これまでにゲノムデータが得られている縄文人の遺伝的構成はひじょうに類似しており、縄文人が文化的にはともかく遺伝的には長期にわたってきわめて均質だったことを示唆します。しかし、現代日本人の形成において重要となるだろう西日本の縄文時代後期〜晩期の個体のゲノムデータが蓄積されないうちは、縄文人が長期にわたって遺伝的に均質だったとは、とても断定できません。 縄文人はEEIS関連祖先系統(56%)とEEC関連祖先系統(44%)の混合として、現代日本の「(本州・四国・九州を中心とする)本土」集団は縄文人(8%)と青銅器時代西遼河集団(92%)の混合としてモデル化でき、黄河流域新石器時代農耕民集団の直接的な遺伝的影響は無視できるほど低い、と推測されています(Wang et al., 2021)。縄文人のシャベル型切歯の程度はわずかなので(Kanzawa-Kiriyama et al., 2019)、この点からも、縄文人がEEIN関連祖先系統を基本的には有さない、との推定は妥当と思われます。一方で、EEIN関連祖先系統でおもに構成される青銅器時代西遼河集団を主要な祖先集団とする現代日本人(「本土」集団)においては、シャベル型切歯が高頻度です。これらは、シャベル型切歯に関する上述の推測と整合的です。 縄文人はYHgでも注目されています。現代日本人(「本土」集団)ではYHg-D1a2aが35.34%と大きな割合を占めており、(Watanabe et al., 2021、関連記事)北海道など上述の縄文人でもYHgが確認されている個体は全てD1a2aで、日本列島外では低頻度であることから、YHg-D1a2aは日本列島固有との認識が一般的なようです。しかし、カザフスタン南部で発見された紀元後236〜331年頃の1個体(KNT004)はYHg-D1a2a2a(Z17175、CTS220)です(Gnecchi-Ruscone et al., 2021、関連記事)。KNT004はADMIXTURE分析では、朝鮮半島に近いロシアの沿岸地域の悪魔の門遺跡の7700年前頃の個体群(Siska et al., 2017、関連記事)に代表される系統構成要素(アジア北東部人祖先系統)の割合が高く、悪魔の門遺跡個体群はAR14Kと遺伝的にきわめて密接です。また、アムール川流域の11601〜11176年前頃の1個体(AR11K)は、YHg-DEです。アムール川流域にYHg-Eが存在したとは考えにくいので、YHg-Dである可能性がきわめて高そうです。 YHg-Dはアジア南東部の古代人でも確認されており、ホアビン文化(Hòabìnhian)層で見つかった、較正年代で4415〜4160年前頃の1個体(Ma911)はYHg-D1(M174)です(McColl et al., 2018、関連記事)。ほぼEEC関連祖先系統で構成されるアンダマン諸島現代人のYHgがほぼD1で、YHg-D1の割合が高い現代チベット人はEEC関連祖先系統の割合が20%近くと推定されます(Wang et al., 2021)。また、縄文人と悪魔の門遺跡個体群などアジア東部沿岸部集団との遺伝的類似性も指摘されています(Gakuhari et al., 2020)。EEC関連祖先系統を有する集団がアジア東部沿岸部をかなりの程度北上したことは、一部のアメリカ大陸先住民集団でアンダマン諸島人などとの遺伝的類似性が指摘されていること(Castro e Silva et al., 2021、関連記事)からも明らかでしょう。 これらの知見からは、YHg-D1はおもにEEC関連祖先系統で構成される現生人類集団に由来し、ユーラシア南岸を東進してアジア南東部からオセアニアへと拡散して、アジア南東部から北上してアジア東部へと拡散したことが窺えます。カザフスタンの紀元後3〜4世紀の個体(KNT004)がYHg-D1a2a2aで、悪魔の門遺跡の7700年前頃の個体群に代表される系統構成要素(アジア北東部人祖先系統)の割合が高いことからも、YHg-D1a2aは日本列島固有ではなく、アジア東部沿岸部を中心にかつては広範にアジア東部に存在し、縄文時代の始まる前に日本列島に到来した、と推測されます。現代日本人で見られるYHg-D1a2a1とD1a2a2の分岐も、日本列島ではなくアジア東部大陸部で起きていたかもしれません。そうすると、4万年前頃までさかのぼる日本列島の最初期現生人類のYHgはD1a2aではなかったかもしれません。また、KNT004の事例からは、現代日本人のYHg-D1a2a2aの中には、弥生時代以降に到来したものもあったかもしれない、と考えられます。 日本列島の最初期現生人類が縄文人の直接的祖先なのか否か、縄文人がどのような過程で形成されたのか、現時点では不明ですが、日本列島も含めてユーラシア東部の洞窟の土壌DNA解析により、この問題の解明が進むと期待されます。一方、おもにEEI関連祖先系統で構成される集団のYHgに関しては、田園個体が(高畑., 2021)K2bで、アムール川流域の19000年前頃以降の個体がおもにCもしくはC2であることから、CとK2の混在だったかもしれません。YHg-K2から日本人も含めてアジア東部現代人で多数派のOが派生するので、この点も核ゲノムではアジア東部現代人がおもにEEI関連祖先系統で構成されることと整合的です。 ●まとめ 人類集団の地域的連続性との観念には根強いものがありそうで、それが愛国主義や民族主義とも結びつきやすいだけに、警戒が必要だとは思います。近年の古代ゲノム研究の進展からは、ネアンデルタール人など絶滅ホモ属(古代型ホモ属)と現代人との特定地域における遺伝的不連続性はもちろん、現生人類に限定しても、更新世と完新世において集団の絶滅・置換は珍しくなかったことが示唆されます。さらに、非現生人類ホモ属においても、こうした特定地域における人類集団の絶滅・置換は珍しくなかったことが示唆されています。 具体的には、アルタイ山脈のネアンデルタール人は、初期の個体とそれ以降の個体群で遺伝的系統が異なり、置換があった、と推測されています(Mafessoni et al., 2020、関連記事)。また、イベリア半島北部においても、洞窟堆積物のDNA解析からネアンデルタール人集団間で置換があった、と推測されています(Vernot et al., 2021、関連記事)。現在のドイツで発見されたネアンデルタール人と関連づけられそうな遺跡の比較からは、ネアンデルタール人集団が移住・撤退もしくは絶滅・(孤立した集団の退避地からの)再移住といった過程を繰り返していたことが窺えます(Richter et al., 2016、関連記事)。 こうしたヨーロッパにおける複雑な過程の繰り返しにより後期ネアンデルタール人は形成されたのでしょうが、それはアフリカにおける現生人類も同様だった、と考えられます(Scerri et al., 2018、関連記事)。さらにいえば、ホモ属(関連記事)や他の多くの人類系統の分類群の出現過程も同様で、特定の地域における単純な直線的進化で把握することは危険でしょう。その意味で、たとえば中華人民共和国陝西省の遺跡に関しては、210万〜130万年前頃にかけて人類が繰り返し利用したかもしれない、と指摘されていますが(Zhu et al., 2018、関連記事)、それらの集団が全て祖先・子孫関係にあったとは限りません。 その意味で、前期更新世からのアフリカとユーラシアの広範な地域における人類の連続性が根底にある現生人類アフリカ多地域進化説は根本的に間違っている、と評価すべきなのでしょう(Scerri et al., 2019、関連記事)。今回はユーラシア東部内陸部に関してほとんど言及できませんでしたが、バイカル湖地域では更新世から完新世にかけて現生人類集団の大きな遺伝的変容や置換があった、と推測されています(Yu et al., 2020、関連記事)。またモンゴルに関しては、完新世において最初に牧畜文化をもたらした集団の遺伝的構成は比較的短期間で失われた、と推測されています(Jeong et al., 2020、関連記事)。 これらは上述したオーストラリアの事例でも当てはまるかもしれず、65000年前頃の人類の痕跡が本当だとしても、それが現代のオーストラリア先住民と連続しているかどうかは不明で、mtDNAで推測される5万年近くにわたるオーストラリアの人類の連続性との見解も、古代DNAデータが得られなければ確定は難しいでしょう(オーストラリアで更新世の人類遺骸や堆積物からDNAを解析するのは難しそうですが)。日本列島も同様で、4万年以上前とされる不確かな遺跡はもちろん、4万年前以降の人類、とくに最初期の人類に関しては、縄文人などその後の日本列島の人類と遺伝的につながっているのか、まだ判断が難しいところです。日本列島の人口史に関しては、人類遺骸からのDNA解析とともに、更新世堆積物のDNA解析が飛躍的に研究を進展させるのではないか、と期待しています。 もちろん、上記の私見はあくまでも現時点でのデータに基づくモデル化に依拠しているので、今後の研究の進展により大きく変えざるを得ないところも出てくる可能性は低くありません。また、今回は特定の地域における人類集団の長期の連続性という見解に対する疑問を強調しましたが、逆に、安易に特定の地域における人類集団の断絶を断定することも問題でしょう。たとえば、現代日本社会において「愛国的な」人々の間で好まれているらしい、三国時代の前後において「中国人」もしくは「漢民族」は絶滅した、といった言説です。古代ゲノムデータも用いた研究では、後期新石器時代から現代の中原(おおむね現在の河南省・山西省・山東省)における長期の遺伝的類似性・安定性の可能性が指摘されています(Wang et al., 2020、関連記事)。もちろん、遺伝的構成と民族、さらに文化は、相関する場合が多いとはいえ、安易に結びつけてはなりませんが、「中国」における人類集団の連続性を論ずる場合には、こうしたゲノム研究を無視できない、とも考えています。 参考文献: Adachi N. et al.(2021): Ancient genomes from the initial Jomon period: new insights into the genetic history of the Japanese archipelago. Anthropological Science, 129, 1, 13–22. https://doi.org/10.1537/ase.2012132 Bergström A. et al.(2021): Origins of modern human ancestry. Nature, 590, 7845, 229–237. https://doi.org/10.1038/s41586-021-03244-5
Castro e Silva MA. et al.(2021): Deep genetic affinity between coastal Pacific and Amazonian natives evidenced by Australasian ancestry. PNAS, 118, 14, e2025739118. https://doi.org/10.1073/pnas.2025739118
Chan EKF. et al.(2019): Human origins in a southern African palaeo-wetland and first migrations. Nature, 575, 7781, 185–189. https://doi.org/10.1038/s41586-019-1714-1
Clarkson C. et al.(2017): Human occupation of northern Australia by 65,000 years ago. Nature, 547, 7663, 306–310. https://doi.org/10.1038/nature22968
Fu Q. et al.(2014): Genome sequence of a 45,000-year-old modern human from western Siberia. Nature, 514, 7523, 445–449. https://doi.org/10.1038/nature13810
Fu Q. et al.(2015): An early modern human from Romania with a recent Neanderthal ancestor. Nature, 524, 7564, 216–219. https://doi.org/10.1038/nature14558
Gakuhari T. et al.(2020): Ancient Jomon genome sequence analysis sheds light on migration patterns of early East Asian populations. Communications Biology, 3, 437. https://doi.org/10.1038/s42003-020-01162-2
Gnecchi-Ruscone GA. et al.(2021): Ancient genomic time transect from the Central Asian Steppe unravels the history of the Scythians. Science Advances, 7, 13, eabe4414. https://doi.org/10.1126/sciadv.abe4414
Gokcumen O.(2020): Archaic hominin introgression into modern human genomes. American Journal of Physical Anthropology, 171, S70, 60–73. https://doi.org/10.1002/ajpa.23951
Hajdinjak M. et al.(2021): Initial Upper Palaeolithic humans in Europe had recent Neanderthal ancestry. Nature, 592, 7853, 253–257. https://doi.org/10.1038/s41586-021-03335-3
Harris EE.著(2016)、水谷淳訳『ゲノム革命 ヒト起源の真実』(早川書房、原書の刊行は2015年)
Hlusko LJ. et al.(2018): Environmental selection during the last ice age on the mother-to-infant transmission of vitamin D and fatty acids through breast milk. PNAS, 115, 19, E4426–E4432. https://doi.org/10.1073/pnas.1711788115
Jeong C. et al.(2020): A Dynamic 6,000-Year Genetic History of Eurasia’s Eastern Steppe. Cell, 183, 4, 890–904.E29. https://doi.org/10.1016/j.cell.2020.10.015
Kanzawa-Kiriyama H. et al.(2019): Late Jomon male and female genome sequences from the Funadomari site in Hokkaido, Japan. Anthropological Science, 127, 2, 83–108. https://doi.org/10.1537/ase.190415
Kataoka K. et al.(2021): The human EDAR 370V/A polymorphism affects tooth root morphology potentially through the modification of a reaction–diffusion system. Scientific Reports, 11, 5143. https://doi.org/10.1038/s41598-021-84653-4
Kuhlwilm M. et al.(2019): Ancient admixture from an extinct ape lineage into bonobos. Nature Ecology & Evolution, 3, 6, 957–965. https://doi.org/10.1038/s41559-019-0881-7
Manuel M. et al.(2016): Chimpanzee genomic diversity reveals ancient admixture with bonobos. Science, 354, 6311, 477-481. https://doi.org/10.1126/science.aag2602
Mao X. et al.(2021): The deep population history of northern East Asia from the Late Pleistocene to the Holocene. Cell, 184, 12, 3256–3266.E13. https://doi.org/10.1016/j.cell.2021.04.040
Massilani D. et al.(2020): Denisovan ancestry and population history of early East Asians. Science, 370, 6516, 579–583. https://doi.org/10.1126/science.abc1166
McColl H. et al.(2018): The prehistoric peopling of Southeast Asia. Science, 361, 6397, 88–92. https://doi.org/10.1126/science.aat3628
Mizuno F. et al.(2021): Population dynamics in the Japanese Archipelago since the Pleistocene revealed by the complete mitochondrial genome sequences. Scientific Reports, 11, 12018. https://doi.org/10.1038/s41598-021-91357-2
Moreno-Mayar JV. et al.(2018): Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans. Nature, 553, 7687, 203–207. https://doi.org/10.1038/nature25173
O’Connell JF. et al.(2018): When did Homo sapiens first reach Southeast Asia and Sahul? PNAS, 115, 34, 8482–8490. https://doi.org/10.1073/pnas.1808385115
Petr M. et al.(2020): The evolutionary history of Neanderthal and Denisovan Y chromosomes. Science, 369, 6511, 1653–1656. https://doi.org/10.1126/science.abb6460
Prüfer K. et al.(2021): A genome sequence from a modern human skull over 45,000 years old from Zlatý kůň in Czechia. Nature Ecology & Evolution, 5, 6, 820–825. https://doi.org/10.1038/s41559-021-01443-x
Raghavan M. et al.(2014): Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature, 505, 7481, 87–91. https://doi.org/10.1038/nature12736
Robert A.著(2013)、野中香方子訳『人類20万年遥かなる旅路』(文藝春秋社、原書の刊行は2009年)
Scerri EML, Chikhi L, and Thomas MG.(2019): Beyond multiregional and simple out-of-Africa models of human evolution. Nature Ecology & Evolution, 3, 10, 1370–1372. https://doi.org/10.1038/s41559-019-0992-1
Schlebusch CM. et al.(2021): Human origins in Southern African palaeo-wetlands? Strong claims from weak evidence. Journal of Archaeological Science, 130, 105374. https://doi.org/10.1016/j.jas.2021.105374
Shreeve J.著(1996)、名谷一郎訳『ネアンデルタールの謎』(角川書店、原書の刊行は1995年)
Sikora M. et al.(2019): The population history of northeastern Siberia since the Pleistocene. Nature, 570, 7760, 182–188. https://doi.org/10.1038/s41586-019-1279-z Siska V. et al.(2017): Genome-wide data from two early Neolithic East Asian individuals dating to 7700 years ago. Science Advances, 3, 2, e1601877. https://doi.org/10.1126/sciadv.1601877
Svensson E. et al.(2021): Genome of Peştera Muierii skull shows high diversity and low mutational load in pre-glacial Europe. Current Biology. https://doi.org/10.1016/j.cub.2021.04.045
Tobler R et al.(2017): Aboriginal mitogenomes reveal 50,000 years of regionalism in Australia. Nature, 544, 7649, 180–184. https://doi.org/10.1038/nature21416
Vallini L. et al.(2021): Genetics and material culture support repeated expansions into Paleolithic Eurasia from a population hub out of Africa. bioRxiv. https://doi.org/10.1101/2021.05.18.444621
Wang CC. et al.(2021): Genomic insights into the formation of human populations in East Asia. Nature, 591, 7850, 413–419. https://doi.org/10.1038/s41586-021-03336-2
Watanabe Y et al.(2019): Analysis of whole Y-chromosome sequences reveals the Japanese population history in the Jomon period. Scientific Reports, 9, 8556. https://doi.org/10.1038/s41598-019-44473-z
Yang MA. et al.(2017): 40,000-Year-Old Individual from Asia Provides Insight into Early Population Structure in Eurasia. Current Biology, 27, 20, 3202–3208. https://doi.org/10.1016/j.cub.2017.09.030
Yang MA. et al.(2020): Ancient DNA indicates human population shifts and admixture in northern and southern China. Science, 369, 6501, 282–288. https://doi.org/10.1126/science.aba0909
Yu H. et al.(2020): Paleolithic to Bronze Age Siberians Reveal Connections with First Americans and across Eurasia. Cell, 181, 6, 1232–1245.E20. https://doi.org/10.1016/j.cell.2020.04.037
佐藤宏之(2013)「日本列島の成立と狩猟採集の社会」『岩波講座 日本歴史 第1巻 原始・古代1』P27-62
澤藤りかい、蔦谷匠、石田肇(2021)「アジア東部のホモ属に関するレビュー」『パレオアジア文化史学:アジアにおけるホモ・サピエンス定着プロセスの地理的編年的枠組みの構築2020年度研究報告書(PaleoAsia Project Series 32)』P101-112
高畑尚之(2021)「上部旧石器時代の北ユーラシアの人々に関するゲノム研究」『パレオアジア文化史学:アジア新人文化形成プロセスの総合的研究2020年度研究報告書(PaleoAsia Project Series 36)』P27-44
仲田大人(2019)「IUP(初期後期旧石器石器群)をめぐる研究の現状」『パレオアジア文化史学:アジアにおけるホモ・サピエンス定着プロセスの地理的編年的枠組みの構築2018年度研究報告書(PaleoAsia Project Series 18)』P125-132
仲田大人(2020)「日本列島への人類移動を考えるための覚え書き」『パレオアジア文化史学:アジアにおけるホモ・サピエンス定着プロセスの地理的編年的枠組みの構築2019年度研究報告書(PaleoAsia Project Series 25)』P84-91
吉田泰幸(2017)「縄文と現代日本のイデオロギー」『文化資源学セミナー「考古学と現代社会」2013-2016』P264-270 https://doi.org/10.24517/00049063
https://sicambre.at.webry.info/202106/article_22.html
|