★阿修羅♪ > 戦争a8 > 384.html ★阿修羅♪ |
|
Tweet |
【メキシコで感染爆発している新型ブタインフルエンザに米軍生物兵器の容疑濃厚】33年前にも米軍施設内で同型ウイルス感染爆発が起き、多くの兵士が死んでいた
豚インフルエンザは、冷戦時代にキューバなどの畜産壊滅を目論んで
米軍が生物兵器として保有し、実際に使われた疑いもあったウイルス兵器だった。
このニュースがマスコミ界で“感染爆発”した前日にも、奇しくも下記のような
生物兵器がらみの不祥事が発覚していた。
------------------------------------------------------------
米軍フォートデトリック生物兵器研究所でウイルス兵器標本が行方不明になり憲兵隊が捜査中
http://www.asyura2.com/09/wara8/msg/362.html
------------------------------------------------------------
▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
http://www.infowars.net/articles/april2009/240409Dix.htm
Previous Swine Flu Outbreak Originated At Fort Dix
Mass vaccination program was halted after hundreds contracted debilitating nerve disease
Steve Watson
Infowars.net
Friday, April 24, 2009
Given the reports of the possibility of a swine flu epidemic (http://www.infowars.net/articles/april2009/240409Flu.htm), is interesting to note that last time there was a significant outbreak of a new form of swine flu in the U.S. it originated at the army base at Fort Dix, New Jersey (http://www.wired.com/science/discoveries/news/2008/03/dayintech_0324).
Hundreds of soldiers on the base, mostly recruits, were infected without becoming ill in 1976.
------------------------------
------------------------------
President Gerald Ford immediately ordered a nationwide vaccination program.
More than 40 million people were vaccinated. However, the program was stopped short after over 500 cases of Guillain-Barre syndrome, a severe paralyzing nerve disease, were reported. 30 people died as a direct result of the vaccinations.
Unanswered questions regarding the outbreak remain to this day. According to a CDC investigation (http://www.cdc.gov/ncidod/EID/vol12no01/05-0965.htm), It is not known why the virus did not extend beyond basic trainees or beyond the military base. The source of the virus, the exact time of its introduction into Fort Dix, and factors limiting its spread and duration remain unknown.
Previous reports of attempts to use influenza as a bio weapon, should also have us asking concerned questions. See below for further reading.
‘Accidental’ Contamination Of Vaccine With Live Avian Flu Virus Virtually Impossible
http://www.prisonplanet.com/accidental-contamination-of-vaccine-with-live-avian-flu-virus-virtually-impossible.html
Indonesia’s Health Minister Accuses U.S. Of Bird Flu Bio-Weapon Conspiracy
http://www.prisonplanet.com/articles/february2008/022108_bird_flu.htm
Military resurrects deadly flu virus
http://www.greenleft.org.au/2003/558/29373
Experts fear escape of 1918 flu from lab
http://www.prisonplanet.com/articles/october2004/211004fearescape.htm
The avian flu fright: Politically timed for global 'iatrogenocide'
http://www.onlinejournal.com/health/102205Horowitz/102205horowitz.html
▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
http://www.infowars.net/articles/april2009/240409Flu.htm
WHO: Swine Flu Could Trigger Global Pandemic
Unheard of new strain is hybrid resulting from a combination of four different viruses
Steve Watson
Infowars.net
Friday, April 24, 2009
The World Health Organization has warned that a new form of influenza that may have spread from Mexico into the U.S. could develop into a pandemic-type virus.
Hundreds of people in Mexico have been infected and 60 have died from suspected swine flu, while seven human cases have been confirmed in the United States, a World Health Organisation spokeswoman has said (http://www.google.com/hostednews/afp/article/ALeqM5hqvUky7Db4m9TlO-2L8Z4q2vDJbw).
U.S. labs are still running tests on the Mexican strain of the virus, results of which will be released by the will be released later today by the federal Centers for Disease Control and Prevention in Atlanta.
At this point it is not yet clear whether the two strains are the same. Some media reports have failed to make this clear, while the Drudge report (http://www.drudgereport.com/) has jumped in head first declaring an "OUTBREAK" with a giant frothing red headline.
Five of the U.S. cases were recorded in California with a further two in Texas. The first two cases in Southern California appeared almost simultaneously, 100 miles apart, indicating that the virus can silently spread. Neither case was due to contact with swine, and family members had symptoms before and after the confirmed cases, indicating that the H1N1 swine flu is being efficiently transmitted human to human.
Most of the Mexican cases were found in healthy young adults with no known record of prior illness, according to reports.
Schools in Mexico City and the surrounding areas have been temporarily closed and people with flu symptoms have been advised to stay home from work (http://www.reuters.com/article/topNews/idUSTRE53N3CQ20090424). The Mexican government has launched a huge vaccination campaign (http://www.breitbart.com/article.php?id=090424142248.88ahg8e6&show_article=1).
A constantly updated map of the cases swine flu can be viewed here (http://maps.google.com/maps/ms?ie=UTF8&hl=en&t=p&msa=0&msid=106484775090296685271.0004681a37b713f6b5950&ll=32.650649,-116.139221&spn=2.062781,3.99353&z=8)
The WHO has also pointed out that pigs have been implicated in the emergence of new influenza viruses responsible for two of the previous century's influenza pandemics, including the 1918 pandemic strain which spread to nearly every part of the world killing an estimated 2.5 to 5% of the human population - somewhere in the region of 50 million to 100 million people.
The European Centre for Disease Prevention and Control has reiterated the WHO comments, writing on it's website (http://ecdc.europa.eu/):
---------------------------------------
"The infection of humans with a novel influenza A virus infection of animal origins as has happened here is of concern because of the risk, albeit small, that this could represent the appearance of viruses with pandemic potential."
---------------------------------------
According to scientists at the CDC, genetic analysis indicates that the virus is "highly unusual":
"It is a hybrid that resulted from a combination of four different viruses -- one that typically infects people, one that originated in North American birds and two from pigs in Europe and Asia," Anne Schuchat, director of the CDC's National Center for Immunization and Respiratory Diseases, told the Washington Post (http://www.washingtonpost.com/wp-dyn/content/article/2009/04/23/AR2009042304116.html).
"The good news is all seven of these patients have recovered," she said. The virus appears to be resistant to two drugs normally used to treat the flu, but two others appear to be effective against it.
"This combination has not been recognized before in the U.S. or elsewhere," Schuchat said.
Other scientists have warned that if a pig is simultaneously infected with a human and an avian influenza virus, it can serve as a "mixing vessel" for the two viruses that could combine to create a new more virulent strain.
Though this story has broken in the mainstream media today, authorities have been tracking it for some time. One week ago, the Public Health Agency of Canada contacted health and quarantine services (http://statismwatch.ca/2009/04/23/canadians-returning-from-mexico-urged-to-be-on-alert-for-flu-like-symptoms/#more-3919) to inform them that Mexican health authorities had advised Canada to be on alert for possible infections.
▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
http://www.wired.com/science/discoveries/news/2008/03/dayintech_0324#
March 24, 1976: Ford Orders Swine-Flu Shots for All
By Tony Long 03.24.08
------------------------------------------------------------
October 12, 1976: Nurse Jacqueline Spaky administers a swine-flu injection with an injector gun on the first day of the immunization program in New York City.
Photo courtesy Bettman/Corbis
------------------------------------------------------------
1976: President Gerald Ford orders a nationwide vaccination program to prevent a swine-flu epidemic.
Ford was acting on the advice of medical experts, who believed they were dealing with a virus potentially as deadly as the one that caused the 1918 Spanish influenza pandemic (http://virus.stanford.edu/uda/).
The virus surfaced in February at Fort Dix, New Jersey, where 19-year-old Pvt. David Lewis told his drill instructor that he felt tired and weak, although not sick enough to skip a training hike. Lewis was dead with 24 hours.
The autopsy revealed that Lewis had been killed by "swine flu," an influenza virus originating in pigs (http://www.cdc.gov/flu/swine/). By then several other soldiers had been hospitalized with symptoms. Government doctors became alarmed when they discovered that at least 500 soldiers on the base were infected without becoming ill.
It recalled 1918, when infected soldiers returning from the trenches of World War I triggered a contagion that spread quickly around the world, killing at least 20 million people. Fearing another plague (http://www.capitalcentury.com/1976.html), the nation's health officials urged Ford to authorize a mass inoculation program aimed at reaching every man, woman and child. He did, to the tune of $135 million ($500 million in today's money).
Mass vaccinations started in October, but within weeks reports started coming in of people developing Guillain-Barré syndrome, a paralyzing nerve disease, right after taking the shot. Within two months, 500 people were affected, and more than 30 died. Amid a rising uproar and growing public reluctance to risk the shot, federal officials abruptly canceled the program Dec. 16.
In the end, 40 million Americans were inoculated, and there was no epidemic. A later, more technically advanced examination of the virus revealed that it was nowhere near as deadly as the 1918 influenza virus. The only recorded fatality from swine flu itself was the unfortunate Pvt. Lewis.
History's verdict of the program is mixed. Critics assail Ford, accusing him of grandstanding during an election year -- it did him no good, because he lost anyway -- while kowtowing to the pharmaceutical companies. Supporters laud the ability of the nation's health bureaucracy to mobilize so effectively.
Those who remembered 1918 probably consider it money well spent.
(Source: Trentonian, The New York Times http://www.nytimes.com/2005/10/23/weekinreview/23pollack.html)
▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
http://www.cdc.gov/ncidod/EID/vol12no01/05-0965.htm
History
Swine Influenza A Outbreak, Fort Dix, New Jersey, 1976
Joel C. Gaydos,* Franklin H. Top, Jr,† Richard A. Hodder,‡ and Philip K. Russell§1
*Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; †MedImmune, Incorporated, Gaithersburg, Maryland, USA; ‡Northeast Center for Special Care, Lake Katrine, New York, USA; and §Albert B. Sabin Vaccine Institute, New Canaan, Connecticut, USA
------------------------------------------------------------
In early 1976, the novel A/New Jersey/76 (Hsw1N1) influenza virus caused severe respiratory illness in 13 soldiers with 1 death at Fort Dix, New Jersey. Since A/New Jersey was similar to the 1918–1919 pandemic virus, rapid outbreak assessment and enhanced surveillance were initiated. A/New Jersey virus was detected only from January 19 to February 9 and did not spread beyond Fort Dix. A/Victoria/75 (H3N2) spread simultaneously, also caused illness, and persisted until March. Up to 230 soldiers were infected with the A/New Jersey virus. Rapid recognition of A/New Jersey, swift outbreak assessment, and enhanced surveillance resulted from excellent collaboration between Fort Dix, New Jersey Department of Health, Walter Reed Army Institute of Research, and Center for Disease Control personnel. Despite efforts to define the events at Fort Dix, many questions remain unanswered, including the following: Where did A/New Jersey come from? Why did transmission stop?
------------------------------------------------------------
Revisiting events surrounding the 1976 swine influenza A (H1N1) outbreak may assist those planning for the rapid identification and characterization of threatening contemporary viruses, like avian influenza A (H5N1) (1). The severity of the 1918 influenza A (H1N1) pandemic and evidence for a cycle of pandemics aroused concern that the 1918 disaster could recur (2,3). Following the 1918 pandemic, H1N1 strains circulated until the "Asian" influenza A (H2N2) pandemic in 1957 (3). When in early 1976, cases of influenza in soldiers, mostly recruits, at Fort Dix, New Jersey, were associated with isolation of influenza A (H1N1) serotypes (which in 1976 were labeled Hsw1N1), an intense investigation followed (4).
Of 19,000 people at Fort Dix in January 1976, ≈32% were recruits (basic trainees) (4). Recruits reported to Fort Dix for 7 weeks of initial training through the basic training reception center, where they lived and were processed into the Army during an intense 3 days of examinations, administrative procedures, and indoctrination. At the reception center, training unit cohorts were formed. Recruits were grouped into 50-member units (platoons) and organized into companies of 4 platoons each. Units formed by week's end moved from the reception center to the basic training quarters. To prevent respiratory illnesses, recruits were isolated in their company areas for 2 weeks and restricted to the military post for 4 weeks (4). Platoon members had close contact with other platoon members, less contact with other platoons in their company, and even less contact with other companies.
On arrival, recruits received the 1975–1976 influenza vaccine (A/Port Chalmers/1/73 [H3N2], A/Scotland/840/74 [H3N2], and B/Hong Kong/15/72) (4). Other soldiers reported directly to advanced training programs of 4 to 12 weeks at Fort Dix immediately after basic training at Fort Dix or elsewhere. These soldiers received influenza vaccinations in basic training. Civilian employees and soldiers' families were offered vaccine, but only an estimated <40% accepted (4).
Training stopped over the Christmas–New Year's holidays and resumed on January 5, 1976, with an influx of new trainees. The weather was cold (wind chill factors of 0° to –43°F), and the reception center was crowded (4). Resumption of training was associated with an explosive febrile respiratory disease outbreak involving new arrivals and others. Throat swabs were collected from a sample of hospitalized soldiers with this syndrome. On January 23, the Fort Dix preventive medicine physician learned of 2 isolations of adenovirus type 21 and suspected an adenovirus outbreak (4). He notified the county health department and the New Jersey (NJ) Department of Health of the outbreak (4). On January 28, an NJ Department of Health official consulted with the military physician and suggested that the explosive, widespread outbreak could be influenza (4). Over the next 2 days, 19 specimens were delivered to the state laboratory and 7 A/Victoria-like viruses and 3 unknown hemagglutinating agents were identified (4). Specimens were flown to the Center for Disease Control (CDC), Atlanta, Georgia, on February 6, where a fourth unknown agent was found (4).
On February 2, Fort Dix and NJ Department of Health personnel arranged for virologic studies of deaths possibly caused by influenza (4). Tracheal swabs taken on February 5 from a recruit who died on February 4 yielded a fifth unknown agent on February 9. By February 10, laboratory evidence had confirmed that a novel influenza strain was circulating at Fort Dix and that 2 different influenza strains were causing disease. By February 13, all 5 unknown strains were identified as swine influenza A (Hsw1N1). The possibility of laboratory contamination was evaluated (4). No known swine influenza A strains were present in the NJ Department of Health Virus Laboratory before the Fort Dix outbreak. Additionally, all unknown Fort Dix viruses were independently isolated from original specimens at CDC and the Walter Reed Army Institute of Research (WRAIR), Washington, DC. Also, 2 patients with novel virus isolates had convalescent-phase, homologous, hemagglutination-inhibition (HAI) antibody titers of 1:40–1:80, consistent with recent infections. The new influenza strain had been independently identified in 3 different laboratories and supporting serologic evidence developed within 15 days after the original specimens were collected (Table) (4).
Swine Influenza A Viruses
The swine influenza A (Hsw1N1) viruses from Fort Dix soldiers were studied at CDC (5,6). The novel virus was named A/New Jersey/76 (Hsw1N1). Initially, HAI serologic studies of Fort Dix populations were performed at WRAIR by using inactivated A/Mayo Clinic/103/74 (Hsw1N1) antigen from CDC (7). The A/Mayo Clinic virus was recovered in 1974 from lung tissue obtained at autopsy from a man with Hodgkin disease who lived on a swine farm (8). Later, CDC provided WRAIR with A/New Jersey/76 (Hsw1N1) antigen (7).
Outbreak Investigation Planning
Outbreak investigation plans were developed quickly, and lines of communication and responsibilities were defined. Since a retrospective investigation required extensive serologic studies, a serology laboratory was established at WRAIR and operated 7 days a week. The HAI antibody test, which measured antibody to the hemagglutinin glycoprotein, was used to identify infections (9). Variables other than 1976 swine virus infection that might influence HAI titers were identified. Influenza A (H1N1) viruses circulated from 1918 to 1957 (3). Additionally, earlier military influenza vaccines (1955–1969) and some civilian formulations (1956–1958) contained swine antigens (10). Most basic training soldiers were in their late teens and early twenties, so few had potential exposure to military vaccines (the earlier military vaccines were available to civilian workers and soldiers' families) (10). Other populations were expected to have age-related antibody from infections or vaccines. Development of heterotypic antibody after vaccination or infection with contemporary H3N2 antigens was possible; populations suitable for assessing this were studied. None of the potential HAI test limitations was considered serious.
The NJ Department of Health continued to provide virus isolation services to the military (4). Army personnel investigated the outbreak on Fort Dix; civilian health departments defined the outbreak beyond Fort Dix. CDC provided reference laboratory support and consultation.
Case Finding at Fort Dix
Case-finding was conducted prospectively and retrospectively (Table). Prospectively, throat washings were collected from patients with febrile, acute respiratory disease who were hospitalized or sought treatment at the emergency room February 14–16 (phase I, n = 50) and February 22–24 (phase II, n = 45) (7). Attempts were made to obtain paired serum specimens from phase I patients. Specimens were obtained from 60 basic training soldiers, 13 other military personnel, and 22 civilians. A/Victoria/75 (H3N2) virus was isolated from 34 (68%) persons during phase I and 21 (47%) in phase II (7). A/New Jersey/76 (Hsw1N1) was not isolated from any of the 95 patients. One of 34 (3%) persons with an A/Victoria isolate and paired serum samples had a >4-fold rise in titer to A/Mayo Clinic (Hsw1N1) antigen, with an acute titer of <1:10 increasing to 1:20 (7).
Retrospective study was made possible by an ongoing Adenovirus Surveillance Program, which collected weekly throats swabs and paired serum specimens from a sample (≈3%–6%) of basic trainees hospitalized with respiratory disease (7). Specimens had been sent to Army regional laboratories, and 80% of the paired serum specimens from Fort Dix trainees hospitalized between November 1, 1975, and February 14, 1976, went to Fort Meade, Maryland. Serum specimens not depleted by routine studies were stored. Stored serum specimens from 74 Fort Dix trainees were identified at Fort Meade and forwarded to WRAIR; 39 (53%) of the trainees had been hospitalized after January 1, 1976. These serum samples were initially tested against A/Mayo Clinic antigen. Serum samples with >4-fold rises in titer were re-tested against A/New Jersey and A/Victoria/3/75 (H3N2) antigens (7). HAI titers to A/Mayo Clinic and A/New Jersey differed only slightly.
Concerns that influenza A (H3N2) infection or vaccination might stimulate antibody to A/Mayo Clinic were addressed. Four groups were studied to identify persons with >4-fold heterotypic HAI antibody increases to A/Mayo Clinic. None were found in 39 Fort Dix soldiers who received influenza vaccine in February 1976 (group 1), and none were found among 27 hospitalized soldiers from posts other than Fort Dix who had >4-fold rises in complement fixation (CF) antibody to influenza A (group 2) (7). In the third group, >4-fold rises in antibody titers developed in 3 (8%) of 40 soldiers from Fort Dix and elsewhere who had been hospitalized with an A/Victoria isolate (7). In the fourth group, a single serum sample was studied from each of 168 randomly selected Fort Dix basic trainees who had received their annual influenza vaccination 3 to 4 weeks earlier (11). Only 4 (2%) had HAI titers >1:20 to A/Mayo Clinic (11). In similar studies by others, in 0%–6% of persons, heterotypic antibody to influenza A/swine developed after infection with A/Victoria (H3N2) or influenza vaccination (12,13).
Since heterotypic antibody to A/Mayo Clinic seldom occurred, soldiers who were hospitalized for acute respiratory disease and showed a >4-fold titer rise to influenza A (Hsw1N1) in stored serum specimens from the Adenovirus Surveillance Program were considered to have had A/New Jersey infections. Eight new cases in basic trainees were found. Three (38%) of the 8 solders also had >4-fold antibody rises to A/Victoria. Therefore, 13 male, enlisted soldiers, aged 17–21 years, were identified as having had respiratory diseases resulting in hospitalization or death and an A/New Jersey (Hsw1N1) isolate or serologic conversion to A/New Jersey (case-patients). Ten had arrived at Fort Dix between January 5 and February 3, 1976. Three arrived between September 9 and December 30, 1975. Dates of onset of illness were known for 12 and were from January 12 to February 8, 1976. Hospital admissions occurred between January 19 and February 9. Autopsy findings for the only patient who died showed severe edema, hemorrhage, and mononuclear infiltrates in the lungs, consistent with viral pneumonia. No preexisting disease or bacterial infection was found. Four (33%) of the 12 surviving patients had radiologic evidence of pneumonia but their clinical syndromes were similar to those described for patients with infections caused by other influenza A strains (7).
Twelve of the 13 patients were basic trainees; one was an office worker who had an A/New Jersey isolate (7). The 12 trainees were in 9 different training companies (7,14). One company had 3 patients, and 1 company had 2 patients. In these 2 companies, all patients came from the same platoon. Nine were interviewed. Except for those in the same unit, the patients were unknown to each other. All denied swine contact for 6 months before admission. No common variables in working or living environments were identified. All had contact with the Fort Dix medical care system, but care took place in 5 clinics and 2 wards. From January 19 to February 9, there were 7 days when none occupied a hospital bed (7,14).
Transmission and Illness in Units with Case-patients
Transmission was assessed by using HAI antibody titers to A/Mayo Clinic (Hsw1N1). Sixteen of 17 contacts of the patient not in basic training, 18–43 years of age, were studied, and 4 (25%) had titers >1:20 (14). One of the 9 training companies had a case-patient who completed basic training before the case was identified and was not studied. In another company with a case-patient, 13 soldiers were studied, and all had titers <1:10, but their platoons were not identified. Seven companies were studied by comparing the platoon with at least 1 case-patient to other platoons in the company. Some members of all 7 platoons with case-patients had titers >1:20, varying from 7% to 56% (median = 26%). In other platoons from these seven companies, the prevalence of titers >1:20 ranged from 0% to 40% (median 18%), which indicated that A/New Jersey virus transmission was not limited to 1 platoon in most companies (14).
Comparable samples of soldiers from the 7 companies with cases discussed above and 7 contemporary companies without cases were evaluated. Prevalences of HAI antibody titers to A/Mayo Clinic >1:20 in the companies with cases ranged from 0% to 45% (median 18%) (8). Prevalences in the companies without cases was 0%–10% (median 4%) (14).
Available records permitted the identification of hospital admissions for acute respiratory disease in 6 of the 9 companies with an A/New Jersey case. From January 19 to February 9, 1976, when the A/New Jersey patients from these companies were admitted, admission rates for acute respiratory disease of >3.0 per 100 men per week were observed in 4 of the companies. The highest rates occurred during the week ending January 25 and ranged from 1.1 to 6.9 (median 3.4) per 100 men per week (14).
Extent of Spread and Duration of Outbreak
The weekly formation of segregated cohorts of new recruits provided an opportunity to study the extent and duration of virus transmission. A random 9% sample of soldiers beginning basic training from January 5 to March 1 were studied for HAI antibody to A/Mayo Clinic (Hsw1N1) (11). The prevalence of titers >1:20 by weekly cohort ranged from 0% to 19%. The 3 highest prevalences, 19%, 12%, and 9%, occurred in cohorts who started training on January 12, 19, and 26, respectively. Prevalences for 6 other cohorts ranged from 0% to 5%, with 0% prevalence in the cohorts that started training on January 5 and March 1 (11). Eleven of the 12 Fort Dix basic training soldiers identified as A/New Jersey case-patients also began training on January 12, 19, and 26 (11,14).
From February 21 to February 27, a total of 39 soldiers in the basic training reception center were studied for HAI antibody to A/New Jersey (Table) (11). This same group was studied 5 weeks later. All 39 had HAI antibody titers to A/Mayo Clinic <1:10 initially and at 5 weeks. The prevalence of HAI antibody titers to A/Mayo Clinic antigen was also determined in advanced training students, civilians who visited the Fort Dix Phlebotomy Clinic, installation maintenance workers, basic training instructors, military medical and veterinary personnel, and soldiers who worked in the reception center. In advanced training students and persons <25 years of age, the prevalence of titers >1:20 was 0%–6%, consistent with heterotypic responses. However, titers were higher in persons >26 years old; most had prevalences in the range of 17% to 44%, but women and men >51 years of age at the Phlebotomy Clinic had prevalences of 92% (n = 37) and 88% (n = 60), respectively (11).
The earliest A/New Jersey patient was hospitalized on January 19; the last identified patient was admitted on February 9 (Table) (7). Both were identified by serologic testing. Four of 5 patients with virus isolates were admitted on January 29 and 30. The last A/New Jersey isolate came from the soldier who died on February 4. The patient admitted on January 19 reported that his onset of illness occurred on January 12. Since no evidence was found for A/New Jersey virus at Fort Dix before January 12, the virus was likely introduced on or shortly after resumption of training on January 5. As shown by the clustering of hospital admissions, the A/New Jersey outbreak peaked during late January and tapered off in early February. The absence of any indication of the A/New Jersey virus in the cohort beginning basic training on March 1 and in the reception center group who gave blood samples from February 21 to February 27 and 5 weeks later supports the conclusion that A/New Jersey disappeared in February (Table) (11).
To understand the relationship of the A/Victoria and A/New Jersey/76 (Hsw1N1) outbreaks, serum specimens from the 9% sample of soldiers who began basic training from January 5 to March 1 were also studied for HAI antibody to A/Victoria. The geometric mean titers to A/Victoria >1:10 for cohorts beginning training on January 5 and January 12 were 1:56 and 1:53, respectively. The geometric mean titers then increased to 1:114 in the cohort that started on February 2, peaked at 1:120 in the cohort that began on February 9, remained high at 1:109 for the February 16 cohort, and then returned to baseline (11). Thus, the A/New Jersey outbreak likely started in early January and peaked in late January, followed closely by the A/Victoria outbreak.
Even though A/Mayo Clinic titers >1:20 were seen in Fort Dix populations other than basic trainees, the prevalences in young people were very low, consistent with heterotypic antibody. Higher prevalences in older persons could have been related to earlier influenza A (H1N1) infections or vaccinations with vaccines that contained swine influenza antigens (10). The high titers to A/Mayo Clinic in these groups could not be related to illness, vaccination, or swine contact (11). When the serologic data were extrapolated, the total number of A/New Jersey infections in Fort Dix basic trainees was ≈230 when contacts of all 13 case-patients were considered and ≈142 when only virologically confirmed cases were considered true cases (11,15).
Case Finding beyond Fort Dix
Influenza A/Victoria-like strains had been identified in New Jersey as early as January 21, 1976. By the end of January, the state had investigated reports of high employee and student absenteeism and a hospital outbreak. Patients in all episodes were sampled by using virus isolation and serologic testing. All laboratory reports indicated A/Victoria virus infections (4).
Starting February 10, arrangements were made to study febrile respiratory disease patients at McGuire Air Force Base (adjoining Fort Dix) and at hospitals, emergency rooms, and physicians' offices in the Fort Dix vicinity. Medical examiners were told to obtain specimens from possible influenza patients and surveillance was increased statewide. From January 9 to March 19, infection with influenza A/Victoria virus was documented in 301 persons by virus isolation (151 persons), CF or HAI serology (113 persons), or both (37 persons). Cases in New Jersey came from 19 of 21 counties, McGuire Air Force Base, and Lakehurst Naval Training Center. Delaware had 19 cases, including 5 from Dover Air Force Base. From January 31 to March 17, 10 civilian deaths in New Jersey were attributed to influenza. Influenza A/Victoria (H3N2) was isolated from all 10 patients (4).
The numbers of isolation and serologic specimens tested and the percentages positive for A/Victoria were consistent with an outbreak that began quickly in January and declined in late February to early March. No influenza cases were identified after March 19; influenza A/New Jersey was never isolated outside Fort Dix (Table) (4,7).
Among patients with serologic evidence of influenza, HAI antibody responses to both A/Victoria and A/New Jersey were studied in 134. Six (4%), aged 22 to 71 years, had >4-fold HAI rises in titer to both viruses (4). In the absence of any association with swine influenza A virus, the A/New Jersey titers were attributed to A/Victoria infections.
Summary and Speculation
A/New Jersey/76 (Hsw1N1) was likely introduced into Fort Dix early in 1976, after the holidays (15). The virus caused disease with radiologic evidence of pneumonia in at least 4 soldiers and 1 death; all of these patients had previously been healthy (7,15). The virus was transmitted to close contacts in the unique basic training environment, with limited transmission outside the basic training group. A/New Jersey probably circulated for a month and disappeared. The source of the virus, the exact time of its introduction into Fort Dix, and factors limiting its spread and duration are unknown (15).
The Fort Dix outbreak may have been a zoonotic anomaly caused by introduction of an animal virus into a stressed population in close contact in crowded facilities during a cold winter. However, the impact of A/New Jersey virus on this healthy young population was severe in terms of estimated infections, hospitalizations, and duration of the outbreak.
If the outbreak was more than an anomaly, why did it not extend beyond basic trainees? Several factors merit consideration. Contact between basic trainees and others was limited. Moreover, a swine influenza antigen was included in annual military influenza vaccine formulations from 1955 through 1969 (10). The high antibody titers to A/Mayo Clinic antigen observed with increasing age in the Phlebotomy Clinic population may reflect earlier influenza A (H1N1) infections or vaccine exposure and some protection (11). Also, competition between A/New Jersey and A/Victoria viruses must be considered. The A/Victoria virus spread widely and may have limited the impact of A/New Jersey virus with its lesser ability for human transmission.
Could the Fort Dix outbreak have resulted from interaction between swine influenza A and A/Victoria viruses? A/Victoria transmission occurred in New Jersey before A/New Jersey was identified at Fort Dix. Is it possible that A/Victoria virus and an early A/New Jersey virus coinfected a soldier with genetic exchange, resulting in a recombinant virus with enhanced human transmission capability? The rapid disappearance of A/New Jersey prohibited studies of virus interactions. Genetic analyses of A/New Jersey, A/Victoria and contemporary A/swine viruses might elucidate a relationship.
Communication and collaboration existed at the onset of the outbreak and continued throughout the investigation. The points of contact at the NJ Department of Health, Fort Dix, CDC, and WRAIR had been established before the outbreak, so time was not lost identifying organizations and persons who needed to be contacted. Organizational roles were defined early and respected. The development of outbreak investigation plans, collaboration in field and laboratory work, and exchange of information occurred smoothly. An important part of the Army investigation was establishment of points of contact at WRAIR who communicated with military leaders, the NJ Department of Health, CDC, and the press. Military epidemiology and laboratory teams reported to WRAIR points of contact. This system protected these teams from disruptive inquiries.
The burden on the laboratories supporting this investigation was intense, lasting for weeks. In 1976, WRAIR was a research and field epidemiology laboratory that also operated as a public health reference laboratory. The WRAIR commander had the authority to reallocate and mobilize scientists and laboratory resources. Today, WRAIR no longer functions as a public health laboratory. The depth of resources and flexibility that existed at WRAIR in 1976 cannot be found in other military laboratories (16). Duplicating the 1976 laboratory effort today, in timely fashion, would be difficult.
------------------------------------------------------------
Acknowledgments
The investigation of the Fort Dix swine influenza A outbreak in 1976 was made possible by the competence, professionalism, and hard work of many persons from the New Jersey Department of Health; Fort Dix, NJ, US Army Medical Department Activity; WRAIR; CDC; and others. We acknowledge all of them, wherever they may be, with gratitude for their outstanding contributions.
Dr Gaydos is director, Public Health Practices, for the US Department of Defense Global Emerging Infections Surveillance and Response System. His research interests include acute respiratory diseases in previously healthy persons and sexually transmitted infections.
------------------------------------------------------------
References
Centers for Disease Control and Prevention. Update: influenza activity—United States and worldwide, 2004–05 season. MMWR Morb Mortal Wkly Rep. 2005;54:631–4.
Crosby AW. Epidemic and peace, 1918. Westport (CT): Greenwood Press; 1976.
Cox NJ, Fukuda K. Influenza. Infect Dis Clin North Am. 1998;12:27–38.
Goldfield M, Bartley JD, Pizzuti W, Black HC, Altman R, Halperin WE. Influenza in New Jersey in 1976: isolations of influenza A/New Jersey/76 virus at Fort Dix. J Infect Dis. 1977;136:S347–55.
Kendal AP, Goldfield M, Noble GR, Dowdle WR. Identification and preliminary antigenic analysis of swine influenza-like viruses isolated during an influenza outbreak at Fort Dix, New Jersey. J Infect Dis. 1977;136:S381–5.
Kendal AP, Noble GR, Dowdle WR. Swine influenza viruses isolated in 1976 from man and pig contain two coexisting subpopulations with antigenically distinguishable hemagglutinins. Virology. 1977;82:111–21.
Gaydos JC, Hodder RA, Top FH, Jr., Soden VJ, Allen RG, Bartley JD, et al. Swine influenza A at Fort Dix, New Jersey (January–February 1976). I. Case finding and clinical study of cases. J Infect Dis. 1977;136:S356–62.
Smith TF, Burgert EO Jr, Dowdle WR, Noble GR, Campbell RJ, Van Scoy RE. Isolation of swine influenza virus from autopsy lung tissue of man. N Engl J Med. 1976;294:708–10.
Treanor JJ, King JC, Zangwill KM. New approaches to influenza vaccine in new generation vaccines. 3rd ed. New York: Marcel Dekker; 2004:537–58.
Takafuji ET, Johnson DE, Segal HE. The swine antigen in previous influenza vaccines. N Engl J Med. 1976;295:1018.
Hodder RA, Gaydos JC, Allen RG, Top FH Jr, Nowosiwsky T, Russell PK. Swine influenza A at Fort Dix, New Jersey (January–February 1976). III. Extent of spread and duration of the outbreak. J Infect Dis. 1977;136:S369–75.
Masurel N. Swine influenza virus and the recycling of influenza-A viruses in man. Lancet. 1976;2:244–7.
Noble GR, Kaye HS, Kendal AP, Dowdle WR. Age-related heterologous antibody responses to influenza virus vaccination. J Infect Dis. 1977;136:S686–92.
Gaydos JC, Hodder RA, Top FH Jr, Allen RG, Soden VJ, Nowosiwsky T, et al. Swine influenza A at Fort Dix, New Jersey (January–February 1976). II. Transmission and morbidity in units with cases. J Infect Dis. 1977;136:S363–8.
Top FH Jr, Russell PK. Swine influenza A at Fort Dix, New Jersey (January–February 1976). IV. Summary and speculation. J Infect Dis. 1977;136:S376–80.
Gaydos JC. The need for a military public health laboratory symposium. Mil Med. 2000;165:5–7.
------------------------------------------------------------
Table. Key events in the swine influenza A (Hsw1N1) outbreak, Fort Dix, NJ
Date (1976)
Event
January 5
After the holidays, basic training resumed at Fort Dix, NJ; a sudden, dramatic outbreak of acute respiratory disease followed the influx of new recruit trainees (4).
January 19
Earliest hospitalization of a Fort Dix soldier with acute respiratory disease attributed to swine influenza A (Hsw1N1) (identified retrospectively by serologic tests) (7,14)
January 21
Influenza A/Victoria (H3N2) identified away from Fort Dix in NJ civilians (4)
January 23
Fort Dix received reports of adenovirus type 21 isolations from soldiers ill with respiratory disease and reported the outbreak to the local and state health departments (4)
January 28
A NJ Department of Health official suggested the Fort Dix outbreak may be due to influenza and offered to process specimens for virus isolation (4)
January 29–30
19 specimens sent to NJ Department of Health in 2 shipments (4)
February 2–3
NJ Department of Health identified 4 isolates of H3N2-like viruses and 2 unknown hemagglutinating agents in 8 specimens sent on January 29. Fort Dix and NJ Department of Health arranged for the study of deaths possibly due to influenza. NJ Department of Health identified 3 H3N2-like viruses and a third unknown hemagglutinating agent in 11 specimens sent on January 30 (4).
February 4
Fort Dix soldier died with acute respiratory disease (4).
February 5
Tracheal specimens from the soldier who died on February 4 were sent to NJ Department of Health (4).
February 6
NJ Department of Health sent the Fort Dix specimens to Center for Disease Control (CDC), Atlanta, GA; CDC identified a fourth unknown hemagglutinating agent in the Fort Dix specimens (4).
February 9
Specimens from the soldier who died on February 4 yielded a fifth unknown hemagglutinating agent (4). Last hospitalization of an identified Fort Dix soldier with febrile, acute respiratory disease attributed to swine influenza A (Hsw1N1) (identified retrospectively by serologic tests) (7,14).
February 10
Laboratory evidence supported 2 influenza type A strains circulating on Fort Dix; 1 was a radically new strain. Prospective surveillance for cases in the areas around Fort Dix was initiated; only cases of H3N2 were found (4).
February 13
Review of laboratory data and information found that all 5 unknown agents were swine influenza A strains (later named A/New Jersey [Hsw1N1]); 3 laboratories independently identified the swine virus from original specimens (serologic data supporting swine influenza A virus infection was later obtained from 2 survivors with A/New Jersey isolates) (4).
February 14–16
Initial planning meeting between CDC, NJ Department of Health, Fort Dix, and the Walter Reed Army Institute of Research personnel was held in Atlanta, GA. Prospective case finding was initiated at Fort Dix; H3N2 was isolated; Hsw1N1 was not isolated (7). Retrospective case finding was initiated by serologic study of stored serum specimens from Fort Dix soldiers who had been hospitalized for acute respiratory disease; 8 new cases of disease due to Hsw1N1 were identified with hospitalization dates between January 19 and February 9 (7,14).
February 22–24
Prospective case finding was again conducted at Fort Dix; H3N2 virus was isolated but not Hsw1N1 (7).
February 27
Thirty-nine new recruits entering Fort Dix February 21–27 gave blood samples after arrival and 5 weeks later; serologic studies were consistent with influenza immunization but not spread of H3N2 virus. None had a titer rise to Hsw1N1 (11).
March 19
Prospective surveillance identified the last case of influenza in the areas around Fort Dix; only H3N2 viruses were identified outside of Fort Dix (4).
1In 1976 all authors were US Army officers assigned to the Walter Reed Army Institute of Research, Washington, DC.
------------------------------------------------------------
Suggested citation for this article:
Gaydos JC, Top FH, Hodder RA, Russell PK. Swine influenza A outbreak, Fort Dix, New Jersey, 1976. Emerg Infect Dis [serial on the Internet]. 2006 Jan [date cited]. Available from http://www.cdc.gov/ncidod/EID/vol12no01/05-0965.htm
▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲