http://www.asyura2.com/09/eg02/msg/451.html
Tweet |
(回答先: 世界で初めての両面受光太陽電池量産化に成功 投稿者 蓄電 日時 2011 年 7 月 20 日 12:51:42)
http://wirelesswire.jp/special/201107/01/article/4.html
http://wirelesswire.jp/special/201107/01/article/4-2.html
http://wirelesswire.jp/special/201107/01/article/4-3.html
http://wirelesswire.jp/special/201107/01/article/4-4.html
http://wirelesswire.jp/special/201107/01/article/4-5.html
自然再生可能エネルギーへの関心が高まり、太陽電池の開発競争も激しさを増してきた。現在主流となっているシリコン系太陽電池は理論的な変換効率の上限が約30%といわれており、次世代の太陽電池技術が模索されている。中でも、1982年に東京大学 荒川泰彦教授らが提唱した「量子ドット」を用いた太陽電池は、理論的な変換効率が63%という究極の太陽電池として期待されてきた。そして2011年4月、同じ荒川教授らとシャープの研究チームは、従来よりもさらに高い、75%の変換効率を実現できる可能性を示した。夢の太陽電池はどこまで現実に近づいたのか。研究の現状について、荒川教授にうかがった。
光を無駄なく吸収できる量子ドット
──理論的な変換効率が75%の太陽電池を実現できる可能性について発表されました。シリコン系太陽電池では、理論的な最大効率が30%程度と言われますから2倍以上です。そもそもシリコン系太陽電池ではどうして変換効率を上げることができないのでしょう?
太陽電池では、半導体に光が当たると、エネルギーの低い価電子帯と呼ばれる軌道群にある電子が、エネルギーのより高い伝導帯と呼ばれる軌道群へと移ることができます。これが電圧差を生み、電力を取り出せるわけです。価電子帯と伝導帯のエネルギーの差は半導体の種類により決まっており、これを「バンドギャップ」といいます。
光は波と粒子の2つの性質を併せ持っており、粒子の性質が顕わになるときは光子と呼ばれます。この光子が持つエネルギーの高さは波長によって異なっており、シリコン系太陽電池では(波長の短い)青や緑の光を受け取って、価電子帯にいる電子をエネルギーの高い伝導帯に押し上げることができます。しかし、(波長の長い)赤の光は電子を伝導帯に押し上げるにはエネルギーが足りず、吸収できません。また、高いエネルギーを持っている青い光を受けた場合にも、外部に取り出すことのできるエネルギーはバンドギャップの分だけで、残りは熱に変わって逃げてしまいます。
バンドギャップの小さい半導体を使えば、低いエネルギーの光も吸収できますから、価電子帯から伝導帯に移る電子の数、すなわち電流は増やすことができます。しかし、バンドギャップが小さいということは電圧が低くなることですから、十分な電力を取り出せません(電力=電圧×電流であるため)。
▼従来の単接合太陽電池では、バンドギャップよりもエネルギーの低い光は吸収できなかった。また、エネルギーの高い光についても、余剰のエネルギーが熱となって失われていた。
低いエネルギーの光を吸収できないこと、高いエネルギーの光を吸収する際にムダが出ること。この2つが太陽電池の変換効率が上がらない大きな原因です。量子ドットを利用することで、この2つの課題を解決できます。
この記事を読んだ人はこんな記事も読んでいます(表示まで20秒程度時間がかかります。)
スパムメールの中から見つけ出すためにメールのタイトルには必ず「阿修羅さんへ」と記述してください。
すべてのページの引用、転載、リンクを許可します。確認メールは不要です。引用元リンクを表示してください。